Early Results for a Non-parametric Hidden Markov Model for Talker Characterization
نویسندگان
چکیده
This paper defines talker characterization problem and contrasts it to the related problems of talker verification and identification. The requirement is to automatically separate and tag talkers in a conference environment using a microphone array and unconstrained speech. An approach which uses a continuous ergodic HMM organized over broad phonemic categories using non-parametric observation probabilities is presented. Talkers are characterized by forming characterization vectors, where a characterization vector is a collection of likelihoods from a referent set of models. In the first investigation, the experiments use close-talking speech from the TIMIT database, rather than from microphone-array speech, in order to evaluate the characterization method for the more ideal setting.
منابع مشابه
Speech enhancement based on hidden Markov model using sparse code shrinkage
This paper presents a new hidden Markov model-based (HMM-based) speech enhancement framework based on the independent component analysis (ICA). We propose analytical procedures for training clean speech and noise models by the Baum re-estimation algorithm and present a Maximum a posterior (MAP) estimator based on Laplace-Gaussian (for clean speech and noise respectively) combination in the HMM ...
متن کاملIntrusion Detection Using Evolutionary Hidden Markov Model
Intrusion detection systems are responsible for diagnosing and detecting any unauthorized use of the system, exploitation or destruction, which is able to prevent cyber-attacks using the network package analysis. one of the major challenges in the use of these tools is lack of educational patterns of attacks on the part of the engine analysis; engine failure that caused the complete training, ...
متن کاملMonte Carlo Hidden Markov Models: Learning Non-Parametric Models of Partially Observable Stochastic Processes
We present a learning algorithm for non-parametric hidden Markov models with continuous state and observation spaces. All necessary probability densities are approximated using samples, along with density trees generated from such samples. A Monte Carlo version of Baum-Welch (EM) is employed to learn models from data. Regularization during learning is achieved using an exponential shrinking tec...
متن کاملمدل یابی انتشار بیماری های عفونی بر اساس رویکرد آماری بیز
Background and Aim: Health surveillance systems are now paying more attention to infectious diseases, largely because of emerging and re-emerging infections. The main objective of this research is presenting a statistical method for modeling infectious disease incidence based on the Bayesian approach.Material and Methods: Since infectious diseases have two phases, namely epidemic and non-epidem...
متن کاملSpectral Clustering and Embedding with Hidden Markov Models
Clustering has recently enjoyed progress via spectral methods which group data using only pairwise affinities and avoid parametric assumptions. While spectral clustering of vector inputs is straightforward, extensions to structured data or time-series data remain less explored. This paper proposes a clustering method for time-series data that couples non-parametric spectral clustering with para...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000